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Outline

1. Brownian spheres and Brownian disks (as scaling limits of discrete
planar graphs)

2. The construction of the Brownian sphere (from Brownian motion
indexed by the Brownian tree)

3. Excursions of Brownian motion indexed by the Brownian tree (an
analog of the classical Itô theory for Markov processes)

4. The construction of Brownian disks (from the excursion measure for
Brownian motion indexed by the Brownian tree)

5. Cutting Brownian disks at heights (a remarkable
growth-fragmentation process)
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1. Brownian spheres and Brownian disks
Definition
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms). Self-loops and multiple edges are allowed.

root
vertex

root
edge

A rooted quadrangulation with 7
faces

Faces = connected components of
the complement of edges
p-angulation:

each face is incident to
p edges

p = 3: triangulation
p = 4: quadrangulation

Rooted map: distinguished
oriented edge
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The Brownian sphere (or Brownian map)

Let Mn be uniform over M4
n = {rooted quadrangulations with n faces}.

V (Mn) vertex set of Mn

dgr graph distance on V (Mn)

Theorem (LG 2013, Miermont 2013)
We have

(V (Mn), (9/8)1/4 n−1/4 dgr)
(d)−→

n→∞
(m∞,D)

in the Gromov-Hausdorff sense. The limit (m∞,D) is a random
compact metric space called the Brownian sphere (or Brownian map).

Remark A similar result holds for random triangulations and for much
more general random planar maps, with the same limit (Brownian
sphere). For simplicity, we focus on quadrangulations in the present
lecture.
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Two properties of the Brownian sphere
Theorem (Hausdorff dimension)

dim(m∞,D) = 4 a.s.

(Already “known” in the physics literature.)

Theorem (topological type, LG-Paulin 2007)

Almost surely, (m∞,D) is homeomorphic to the 2-sphere S2.

Simulation: N. Curien
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Quadrangulations with a boundary

A quadrangulation
with a boundary of
size 14.

A quadrangulation with a boundary is a rooted planar map M such that
The root face (to the left ot the root edge) has an arbitrary even
degree.
All other faces have degree 4.

The root face is also called the outer face, and its degree is the
boundary size of M.
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Boltzmann quadrangulations with a boundary

For p ≥ 1, let M4,p be the set of all (rooted) quadrangulations with a
boundary of size 2p.
If Q ∈M4,p, let |Q| stand for the number of faces of Q

A Boltzmann quadrangulation with boundary size 2p is a random
quadrangulation with a boundary Qp such that :

P(Qp = Q) = cp 12−n for every Q ∈M4,p with |Q| = n

here cp > 0 is the appropriate normalizing constant (depending on p).

This makes sense because

#{Q ∈M4,p : |Q| = n} ≈
n→∞

c n−5/2 12n
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Convergence to the Brownian disk
Recall that Qp is a Boltzmann quadrangulation with boundary size 2p.
Equip the vertex set V (Qp) with the graph distance dgr.

Theorem (Bettinelli and Miermont)
Then (

V (Qp), (2p/3)−1/2dgr
) (d)−→

p→∞

(
D,∆

)
in the Gromov-Hausdorff sense. The limit (D,∆) is a random compact
metric space called the free Brownian disk with perimeter 1.

By scaling one can define the free Brownian disk with perimeter r .
The free Brownian disk comes with a volume measure Vol. By
conditioning on Vol(D) = v , one defines the Brownian disk with
perimeter r and volume v .
(See also Gwynne and Miller for the simple boundary case, and Miller
and Sheffield for more about Brownian disks)
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Properties of the Brownian disk

Fact (Bettinelli): The free Brownian disk D (with perimeter r > 0) is
homeomorphic to the closed unit disk.
Hence one can make sense of the boundary ∂D.
The uniform measure µ on ∂D may be defined by the approximation

〈µ, ϕ〉 = lim
ε→0

ε−2
∫
D

Vol(dx)ϕ(x) 1{∆(x ,∂D)<ε}

where ϕ is a continuous function on D, and Vol(·) stands for the
volume measure on D.
In particular the total mass of µ is the perimeter (boundary size) r .

Many special subsets of the Brownian sphere (m∞,D) can be
identified as Brownian disks.
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Brownian disks in the Brownian sphere

h

D(x∗, x)

connected components
of m∞\B(h)

x∗

For h > 0, let B(h) be the ball of
radius h centered at the
distinguished point x∗ in the
Brownian sphere (m∞,D)

Let Dj , j ∈ J be the connected
components of m∞\B(h). We can
equip each Dj with its intrinsic
metric D(j)

Vol : volume measure on m∞

Theorem
For every j, the limit

|∂Dj | := limε→0 ε
−2Vol{x ∈ Dj : D(x , ∂Dj) < ε}

exists, and, conditionally on (|∂Dj |,Vol(Dj))j∈J , the metric spaces
(D̄j ,D(j)) are independent Brownian disks with the prescribed volumes
and perimeters.
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2. The construction of the Brownian sphere
A key ingredient: The Brownian tree, or tree coded by a Brownian
excursion under n+(de) (the positive Itô excursion measure).

t

e(t)

σ

Te
ρ

Informally, glue s, t ∈ [0, σ] if they correspond to the ends of a chord
drawn below the graph of e.

Formally, say that s ∼ t iff e(s) = e(t) = minu∈[s∧t ,s∨t] e(u).
The Brownian tree is Te := [0, σ]/∼, with the metric induced by

de(s, t) = e(s) + e(t)− 2 minu∈[s∧t ,s∨t] e(u).
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The Brownian tree
Te := [0, σ]/∼, where

s ∼ t iff e(s) = e(t) = minu∈[s∧t ,s∨t] e(u)

de(s, t) = e(s) + e(t)− 2 minu∈[s∧t ,s∨t] e(u).

Then (Te,de) is a compact R-tree
(means that two points of Te are connected by a
unique arc [[a,b]], which is isometric to a line
segment — d(a,b) is the length of the blue path
connecting a to b) Te

ρ

a

b

Let pe : [0, σ]→ Te = [0, σ]/∼ be the canonical projection:
Te is rooted at ρ := pe(0) = pe(σ)

the volume measure Vol is the push forward of Lebesgue measure
under pe.
the Brownian tree Te also inherits a cyclic ordering from the
projection pe (it makes sense to explore the tree “clockwise” from
one point to another)
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Brownian motion indexed by the Brownian tree

Conditionally on Te, Z = (Za)a∈Te is the centered Gaussian process
characterized by:

Zρ = 0
E[(Za − Zb)2] = de(a,b) for every a,b ∈ Te

(Technical difficulty: Z is a random process indexed by a random set.
Since Te = [0, σ]/∼, one can as well define Z as indexed by [0, σ] —
this is the Brownian snake construction)

Fact: Z has continuous sample paths.

One views Za as a Brownian label assigned to a ∈ Te. When moving
along a line segment of Te, labels evolve like linear Brownian motion.

Motivations for studying Te and (Za)a∈Te : These objects arise in a
number of asymptotics for discrete models, in combinatorics,
interacting particle systems, statistical physics, etc.
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Brownian motion indexed by the Brownian tree 2

0

de(ρ, a)

Za Te
ρ

The collection (Za)a∈Te forms a “tree of Brownian paths” whose
genealogy is prescribed by Te.
Za is also interpreted as a “label” assigned to vertex a ∈ Te.
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The construction of the Brownian sphere
Te is the Brownian tree, (Za)a∈Te Brownian motion
indexed by Te (Two levels of randomness!).
Set, for every a,b ∈ Te,

D0(a,b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc , min
c∈[b,a]

Zc

)
where [a,b] is the “interval” from a to b corresponding to
the cyclic ordering on Te (vertices visited when going
from a to b in clockwise order around the tree).

a

b
the interval
[a, b]

ρ

Then let D be the maximal symmetric function on Te × Te that is
bounded above by D0 and satisfies the triangle inequality. Also set

a ≈ b if and only if D(a,b) = 0 (equivalent to D0(a,b) = 0).

Definition
The free Brownian sphere m∞ is the quotient space m∞ := Te/ ≈,
which is equipped with the distance induced by D.

To get the “standard” Brownian sphere, condition on σ = 1.
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Summary and interpretation

Starting from the Brownian tree Te, with Brownian labels Za,a ∈ Te,
→ Identify two vertices a,b ∈ Te if D◦(a,b) = 0, meaning that:

they have the same label Za = Zb,
one can go from a to b around the tree (in clockwise or in
counterclockwise order) visiting only vertices with label greater
than or equal to Za = Zb.

Key fact: If x∗ is the vertex with minimal label (Zx∗ = min{Za : a ∈ Te})
then, for every a

D(x∗,a) = Za − Zx∗

(labels correspond to distances from x∗, up to a shift)

→ conn.comp. of complement of a ball = excursions of Z above a level
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3. Excursions of Brownian motion indexed by the
Brownian tree

0

Za Te

excursion
C1

excursion
C3

excursion
C2

excursion
C4

C3

C1

C4

ρ

distance
from a
to the root Recall:

Te Brownian tree
(Za)a∈Te Brownian
motion indexed by Te

Let (Ci)i∈I be the
connected
components of
{a ∈ Te : Za 6= 0}.

The excursions of Z are
(
C̄i , (Za)a∈C̄i

)
, i ∈ I, viewed as R-trees

equipped with continuous labels (here C̄i is the closure of Ci )
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The genealogical structure of excursions
Idea: Glue each excursion component Ci into a single point.

C1

C2

C3

a1

a2a3

gluing the excursions

Formally, for every a,b ∈ Te, let

d̃(a,b) = total local time at 0
accumulated by Z
along the geodesic
between a and b,

and set

a ≈ b iff d̃(a,b) = 0

(holds if a,b belong to the same Ci )

Theorem

T̃ := Te/ ≈ equipped with d̃ is a stable tree with index 3/2

Each point of infinite multiplicity of T̃ is obtained from the gluing of an
excursion Ci .
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The stable tree with index 3/2
Constructed as the scaling limit of Galton-Watson trees whose
offspring distribution is in the domain of attraction of a stable law with
index 3/2

Simulation by I. Kortchemski

Points have multiplicity
1,2 or∞

Points of infinite multiplicity are
dense

Each point a of infinite multiplicity is assigned a “mass” ma.
If a is obtained from the gluing of Ci , ma corresponds to the boundary
size of Ci .
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The law of excursions
For each “excursion”

(
C̄i , (Za)a∈C̄i

)
, one can define its boundary size

|∂Ci | = lim
ε→0

ε−2 Vol
(
{a ∈ Ci : |Za| < ε}

)
Theorem (Abraham-LG)
There exists a σ-finite measure M (with appropriate scaling properties)
on the space of compact R-trees T equipped with a volume measure
Vol(·) and with labels (z(a))a∈T , such that, conditionally on (|∂Ci |)i∈I ,

the “excursions”
(
C̄i , (Za)a∈C̄i

)
, i ∈ I are independent

for every i ∈ I, the distribution of
(
C̄i , (Za)a∈C̄i

)
knowing |∂Ci | = r is

M(r) := M
(
· | Σ = r

)
where Σ = limε→0 ε

−2 Vol
(
{a ∈ T : |z(a)| < ε}

)
(the limit exists M a.e.)

We can write M = M+ + M− and interpret M+ as a measure on “trees
of Brownian paths in [0,∞)”. One similarly defines M(r)

+ .
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The tree of paths under M+

0

R+

distance from the root

Under M+, we now have a
tree of nonnegative
“Brownian paths” all starting
from 0, which stay positive
during some interval (0, ε]
and are stopped at the time
when they return to 0, if
they do return to 0.

Informally, the boundary
size Σ counts the number of
paths that return to 0
(circled points on the
figure).
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Explicit formulas under M+

Joint distribution of boundary size and volume: The distribution of the
pair (Σ,Vol(T )) under M+ has density

f (s, v) =

√
3

2π
√

s v−5/2 exp
(
− s2

2v
)

As a consequence, for every s > 0, the density of Vol(T ) under
M(s)

+ := M+(· | Σ = s
)

is

gs(v) =
1√
2π

s3 v−5/2 exp
(
− s2

2v
)

(this is the asymptotic distribution of the volume of a large random
triangulation with a boundary of size n when n→∞ and the volume is
rescaled by n−2)
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4. The construction of Brownian disks under M+

0

a

b
the interval
[a, b]

ρ
Za

distance from a
to the root Under M(r)

+ = M+(· | Σ = r),
we have an R-tree T
and nonnegative labels
z(a), a ∈ T

Also cyclic order structure on T
that allows one define intervals
[a,b] (informally, points visited
when going from a to b around
the tree).

For a,b ∈ T , set

D◦(a,b) = z(a) + z(b)− 2 max
{

min
c∈[a,b]

z(c), min
c∈[b,a]

z(c)
}
.

Imitating the construction of the Brownian sphere would require
identifying a and b if D◦(a,b) = 0. But here this would mean identifying
all boundary points (all c such that z(c) = 0)!
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Constructing free Brownian disks
Recall D◦(a,b) = z(a) + z(b)− 2 max

{
min

c∈[a,b]
z(c), min

c∈[b,a]
z(c)

}
.

Set ∂T = {c ∈ T : z(c) = 0}, T ◦ = T \∂T and, for a,b ∈ T ◦,

∆◦(a,b) =

{
D◦(a,b) if max

{
min[a,b] z(c),min[b,a] z(c)

}
> 0,

∞ otherwise,

and
∆(a,b) = inf

a=a0,a1,...,ak =b
ai∈T ◦

k∑
i=1

∆◦(ai−1,ai).

Theorem

Under M(r)
+ , (∆(a,b),a,b ∈ T ◦) has a continuous extension to T × T ,

which is a pseudo-metric on T . The associated quotient space D
equipped with the distance induced by ∆ is a free Brownian disk with
perimeter r .

Remark: ∂D corresponds to ∂T in the quotient space.
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which is a pseudo-metric on T . The associated quotient space D
equipped with the distance induced by ∆ is a free Brownian disk with
perimeter r .

Remark: ∂D corresponds to ∂T in the quotient space.
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Uniform measure on the boundary

0

a

b

Zc

distance from c
to the root Interpretation: We glue a,b ∈ T ◦ if

they have the same label z(a) = z(b) > 0
going from a to b “around” the tree T one
encounters only vertices with greater label.

The Bettinelli-Miermont construction also relied
on using a labeled forest, but here we have the
additional remarkable interpretation of labels:

z(c) = ∆(c, ∂D) coincides with the distance from
(the equivalence class of) c to ∂D.

One can use this to construct the uniform measure on the boundary.

Proposition

The formula 〈µ, ϕ〉 = lim
ε→0

ε−2
∫
D

Vol(dx)ϕ(x) 1{∆(x ,∂D)<ε}

defines a finite measure on the boundary with total mass r .
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5. Cutting Brownian disks at heights

h

connected components
of {x : H(x) > h}

H(x) = ∆(x, ∂D)

D

∂D

(D,∆) is the free Brownian disk with
perimeter r
For x ∈ D, H(x) = ∆(x , ∂D) is called
the height of x .
Fix h > 0. For each connected
component C of {x : H(x) > h}, can
define its boundary size (perimeter)

|∂C|= lim
ε→0

1
ε2 Vol({x ∈ C :H(x) < h + ε})

Theorem (LG-Riera)
Conditionally on their boundary sizes, the connected components of
{x ∈ D : H(x) > h}, equipped with their intrinsic metrics, are
independent free Brownian disks with the prescribed perimeters.
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Question. How does the collection of perimeters of connected
components of {x ∈ D : H(x) > h} evolve as h varies ?

Write C1,h, C2,h, . . . for the connected components of
{x ∈ D : H(x) > h} ranked in decreasing order of their boundary sizes,
and

X(h) = (|∂C1,h|, |∂C2,h|, . . .)
The preceding theorem suggests that (X(h))h≥0 satisfies a kind of
branching property analogous to that of growth-fragmentation
processes.
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Growth-fragmentation processes
Basic ingredient: Y self-similar Markov process with values in R+

and only negative jumps, absorbed at 0.

t1 t2

−∆Yt1

−∆Yt2

r

−∆Y ′t′1

t′1t1

t2

t′1

Yt

Y ′t

Y ′′t

−∆Yt1

−∆Y ′t′1

−∆Yt2

u

3 particles
alive at
time u

The process starts with an initial
particle (Eve particle) whose mass
evolves in time according to the law
of Y started at r .
When the mass of the initial
particle has a (negative) jump of
size −δ, a new particle (child of the
Eve particle) is created, whose
mass then evolves according to the
law of Y started at δ.
In turn, each child of the Eve
particle has children at jump times
of its mass process, and so on.

The associated growth-fragmentation process is:
Y(t) = ranked sequence of masses of particles alive at time t .
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Growth-fragmentation process in the Brownian disk
Recall that D is the free Brownian disk with perimeter r , and

X(h) = (|∂C1,h|, |∂C2,h|, . . .)
Here C1,h, C2,h, . . . are the connected components of {x ∈ D :H(x)>h}.
Theorem (LG-Riera)
(X(h))h≥0 is a growth-fragmentation process whose Eve particle mass
process X (starting from 1) can be obtained as follows:

Xt = exp(ξτ(t)),

where

τ(t) = inf
{

u ≥ 0 :

∫ u

0
eξs/2 ds > t

}
and ξ is the spectrally negative Lévy process with Laplace exponent

ψ(q) =

√
3

2π

(
− 8

3
q +

∫ 1

1/2
(xq − 1 + q(1− x)) (x(1− x))−5/2 dx

)
.
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Remarks

The formula
Xt = exp(ξτ(t))

is the Lamperti representation of a self-similar Markov process in
terms of a Lévy process.
The theorem is closely related to the work of Bertoin, Curien,
Kortchemski who studied asymptotics for a discrete analog of the
process X(h) (for triangulations with a boundary).
The measure

(x(1− x))−5/2 dx

that appears in the formula for ψ should be compared with the
dislocation measure (x(1− x))−3/2 dx corresponding to the (pure)
fragmentation process obtained by cutting the Brownian tree at
heights (Bertoin).
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